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The effect of finite amplitude on the stable and unstable states of a column of 
an ideal fluid of circular cross-section under the action of surface tension is 
studied. The method of solution is a formal extension of the linearized theory; 
it consists of assuming that the exact solution may be expanded in a power 
series of a small parameter characterizing the amplitude. The calculation is 
carried out to the point where the first non-trivial term of the finite amplitude 
effect is obtained. For the stable states, the result shows that the characteristic 
wavelength of a disturbance which appears to be stationary with respect to an 
observer is decreased by the finite amplitude effect. For the unstable states, it 
reveals that the growth rate depends not only on the wavelength and the magni- 
tude but also on the type of disturbance imposed initially. The last result is a 
direct consequence of the fact that two independent types of initial disturbance, 
the disturbance of the velocity field and the disturbance of the free surface, may 
be imposed simultaneously on the jet. 

1. Introduction 
The object of this paper is to study the effect of finite amplitude on the stable 

and unstable states of a cylindrical column of an ideal fluid, of circular cross- 
section, under the action of surface tension. A columnar jet of circular cross- 
section is formed when liquid issues under pressure through a small circular 
orifice into the air when the gravity effect may be neglected. It is well known that 
in consequence of surface tension a column of circular jet may be unstable under 
a small disturbance. The instability causes the jet to disintegrate into drops. 
This interesting phenomenon was examined and described in the experiments 
by Savart (1833), Haenlein (1932), Grant & Middleman (1966) and many 
others. 

Based on the linearized theory, Lord Rayleigh (1878, 1879) gave a detailed 
analytical explanation of this phenomenon. He considered a columnar circular 
jet of an ideal fluid under a small disturbance which was periodic in the axial 
direction of the jet. He showed that the jet was always stable except when the 
disturbance was axisymmetric and had a wavelength longer than the circum- 
ference of the jet. He further showed that among all the unstable disturbances 
there was a most unstable mode which occurred when the wavelength of the 
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disturbance was 1.435 times the circumference of the jet. From this result he 
concluded that, if the initial magnitude of the disturbance was sufficiently small 
compared with the radius of the jet, this characteristic length would eventually 
decide the size of the drops when the jet disintegrated. 

In  extending Rayleigh's theory, Weber (1931) considered the stability of a 
viscous jet. His linearized theory indicated that the viscosity would not change 
the stability criterion as predicted by the inviscid theory. However, the viscous 
effect would cause the wavelength of the most unstable state to become longer 
than that predicted by the inviscid theory. He also considered the effect of the 
surrounding air on the stability of a jet. The influence of the ambient air pressure 
was found to shorten the break-up time of the jet. But, if the velocity of the jet 
when issued into the air was not too large, the effect of the surrounding air on the 
jet might be neglected. His results were qualitatively in agreement with the 
experimental observations. 

Haenlein (1 932) investigated experimentally the process of disintegration of 
cylindrical jets of liquids of different physical properties. Among his experiments, 
the one most pertinent to the present investigation is the disintegration of a 
cylindrical jet of water, which had the largest ratio of the surface tension to the 
viscosity among all the liquids considered by him. He reported that at a moderate 
jet velocity, when the influence of the surrounding air might be neglected, the 
water jet disintegrated at wavelengths varying from 1.4 to 2-2 times the 
circumference of the jet. At higher velocities, his report indicated that the 
influence of the surrounding air gradually became dominant and the break-up 
behaviour of the jet became quite different from that when the jet was at  lower 
velocity. 

The observed variations in the break-up wavelength of a cylindrical jet 
indicate that the properties of the initial disturbance may play an important 
role in the process of disintegration of a jet. To investigate this role a non- 
linear study of the problem must be made. The present work is devoted to this 
purpose. 

In  the present paper the finite amplitude effect on the growth rate of an un- 
stable disturbance as well as on the propagation speed of a stable, axisymmetric 
disturbance will be studied. Neither the viscous effect nor the influence of the 
surrounding air will be considered. The method of solution is a formal extension 
of the linearized theory; it consists in assuming that the velocity potential, the 
free surface displacement and the growth rate, or the propagation speed, may be 
expanded in power series of a small parameter E characterizing the amplitude. 
By requiring that these formal expansions satisfy the exact governing equations 
and the boundary conditions for all values of e,  sets of linearized boundary-value 
problems can be obtained. The calculations presented in this paper are carried 
up to the third-order terms in e so that the first non-trivial term of the finite 
amplitude effect on the growth rate, or on the propagation speed, may be ob- 
tained. This perturbation technique has been applied by many authors to prob- 
lems of water waves with finite amplitude (see Wehausen & Laitone (1960); for 
more recent works, see Tadjbakhsh & Keller (1960), Verma & Keller (1962) and 
Concus (1962)), to non-linear stability problems (see Segel1965), and by Keller & 
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Ting (1966) to periodic vibrations of systems governed by non-linear partial 
differential equations. 

The formulation and the solutions of the present problem are given in $02-4. 
The results are also discussed. 

2. Formulation of the problem 
Consider an infinitely long, columnar jet of an ideal fluid of circular cross- 

section standing still in an inertial frame of reference (r, 8, z )  as shown in figure 1. 
We assume that the jet is under the action of surface tension only. The problem 
is formulated non-dimensionally with the radius of the undisturbed jet, a,  as 
the characteristic length and (T/pa)i  as the characteristic velocity, where T is the 
surface tension and p the density of the fluid. 

FIGURE 1. A cylindrical jet of circular cross-section and its co-ordinate axes. 

To study the stability of this state a small disturbance, periodic in the z- 
direction, is assumed to be applied to the jet. The resulting flow is assumed to 
remain irrotational so that a perturbation velocity potential $(r, 0, z ,  t ) ,  which is 
periodic in the z-direction, exists and satisfies the Laplace equation 

Let us denote t;(e, z, t )  to be the displacement in the r-direction of the free surface 
of the jet from the originally undisturbed one; then the equation for the disturbed 
free surface may be written as 

r = 1 + t;(O, z ,  t ) .  (2) 

We note that c(8, z ,  t )  is assumed to have a period h in the z-direction. Due to 
the conservation of mass and the periodicity of the disturbance, we should have 
the relation 

fS,zn’kdz~02=(l +t;)2d0 = n(2n/k), (3) 

where k = 2n/h. 

the dynamic boundary conditions, which are (cf. Lamb 1932, pp. 455-456) 
The boundary conditions on the free surface of the jet are the kinematic and 
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and 

respectively. It should be mentioned that a function of t  has been temporarily 
deleted from the dynamic boundary condition (5). This function o f t  can be de- 
termined later when the physical problem is completely specified. 

1 2 3 4 

k 

FIGURE 2 .  Linearized stationary solutions for an axisymmetric disturbance. 

If  we regard both and 6 as infinitesimal quantities and neglect the non-linear 
terms in equations (I), (3), (4) and (51, a linearized solution can be obtained and is 
given by 

# ( r , B , z , t )  = Re(aexp{d+ikz})I,,(kr) cosrn8, (6) 

where a is an arbitrary constant, I, is the Bessel function of order m, with imagin- 
ary argument, m may be any integer, including zero, and 

In ( 7 ) ,  the notation I k ( k )  is used to indicate d I m ( k ) / d k .  We see from (7) that 
instability may occur only when rn = 0. For m = 0 and k < 1 the quantity under 
the square-root sign in (7) is always positive and has a maximum a t  k = 0.697. 
This value of k gives us the most unstable mode. The above solution and its 
explanationwere given by Rayleigh (1878,1879). 
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When the quantity under the square-root sign in (7) is negative, which gives 
us stable modes, we may rewrite (7) in the form 

The phase velocity c of the stable modes is then 

= [IL(I;)t;;F- 174  
(9) 

To an observer moving with a velocity U/(T/pa)* in the z-direction with respect 
to the jet, a stable mode appears to be stationary if 

where 15 = U2/(T/pa)  is the so-called Weber number. 
Equation (10) is plotted in figure 2 for the case m = 0. In  that figure, the or- 

dinate denotes the Weber number wb and the abscissa denotes k, which, when the 
dimensions are restored, represents the ratio of the circumference of the originally 
undisturbed jet to the wavelength of the periodic disturbance. 

3. Finite amplitude effect on the stable states 
To study the effect of finite amplitude on the stable states, it  is sufficient to 

study only those disturbances which appear to be stationary to an observer. In  
the following analysis only the axisymmetric case, or m = 0, is considered. 

From the linearized solution, it is seen that to an observer having a relative 
velocity U/(T/pa)* with respect to the jet a disturbance appears to be stationary 
if 

where Ih(k) = Il(k) has been used. However, if the effect of amplitude is also 
considered, it is expected that the Weber number should not only be a function 
of the wave-number k but should also depend on the amplitude. To obtain such 
a functional relationship, the following procedures will be used. 

For this problem, it is more convenient to transform the free surface boundary 
conditions to a frame of reference moving with the observer so that the problem 
becomes steady. In  doing so, the final forms of the free surface boundary con- 
ditions are 

and 

In addition to (12) and (13), we also have, from (1) and (3), 

&.+4q$+$8z= 0, for r < I+<@),  -a < z < 00, (14) 

and /oz"k (1 + <)adz = 2 4 k .  (15) 
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We now assume that the amplitude of the disturbances is small and that the 
Weber number may be expanded in a power series of a small parameter c 
characterizing the amplitude; we may write 

wg = cr,(k) +sai(k) + &(k) + 0 ( € 3 ) ,  (16) 

where a , (k ) ,  &(k) and Z ( k )  are functions of k only. Similarly, we assume that both 
the perturbation potential q5 and the free surface displacement cmay be expanded 
in power series of E as shown in the following: 

$(r, z )  = e&r, z )  + e2$(r, z )  + e34(r, z )  + 0 ( € 4 ) ,  

{ ( z )  = &z) + &(z) + E ~ X ( Z )  + o(~4). 

(17) 

(18) 

Substituting (16)) (17) and (18) into (12)) (13)) (14) and (15) and equating, in the 
resulting equations, the coefficients of like powers of E yield the following sets of 
equations : . 1 .  

$,+;#,+.j,= 0, for r < 1, -00 < z < 00, (19) 

2 n/k s, (2[+P)dz = 0, 

J o  

GT + an{, + gC2 = - cicz + $,t, + 4,[,+ c2$=<- &[- drr< - +$rrr(22, on r = 1, 
(29) 

+ &,.q$.[+ $rdr + q5sr$2[ + $,$, + 2<[ - C3 -t- 4tj.E + $lE[,z - [,<,, on r = 1. 
(30) 

gz2 + l+ an$, + 24, = - a,(42r< + Q,r(+ +$,rt2) -&($, + $ 2 r g )  

We note that the free surface boundary conditions have been expanded about 
r = 1. Equations (19)-(22), (23)-(26) and (27)-(30) constitute the first-, second- 
and third-order problems respectively. It is possible, of course, to carry the 
expansions further, but, to obtain the first non-trivial term of the finite amplitude 
effect on the Weber number or the propagation speed of a disturbance, the above 
expansions are sufficient. 
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Perturbation solutions 

A solution which is periodic in the z-direction of (19 )  may be taken in the following 
form : 

where A is a constant. The elimination of g between ( 2 1 )  and ( 2 2 )  and the use of 

4 = AIo(kr)  cos kz, (31 )  

(31 )  give us : 

From ( 3 1 )  and (21) we obtain 

We note that the above result satisfies equation (20). 

and (ZS), we have as the boundary condition for 6 
From the obtained first-order solutions and the elimination of < between (25) 

$7zz+d;r = ~ $ ( k ) ~ z z - 2 0 i ( k ) a , ( k ) A k 2 1 0 ( k )  cos kz 

( 3 4 )  

If the coefficient of cos kz in (34) does not vanish we cannot find a periodic 
potential function 6 satisfying equation (34). Therefore i t  is necessary that 

oi(k) = 0. ( 3 5 )  

A solution of equation (23 )  which satisfies equation ( 3 4 )  with &(k)  = 0 can easily 
be found to be of the form 

A2k211q(k) 6 = - BIo(2kr) sin 2k2, 
a,@) 

where B is a constant. We could, of course, add a term of the form given in ( 3 1 )  
but with an arbitrary constant multiplier. However, such a solution is discarded 
since we wish to allow only the first-order term of this form. This is equivalent to 
saying that we shall re-define the small parameter E so as to make such a. term 
disappear from the higher-order solutions. Substitution of (36) into (34) with 
k ( k )  = 0 yields 

where a,(k) is given by (32 ) .  We note that for k > 1, ai(k) is a monotonically 
increasing function of k ,  and therefore the denominator will never vanish. From 
(36), ( 2 5 ) ,  (24) and the first-order solutions, we can obtain 

( 3 8) 

This completes the second-order solutions. 
20 Fluid Mech. 34 
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6 can be found and is of the form 
Using a process similar to the one used above, the boundary condition for 

(39) 
where 

3Idk) + o-- 12(W - - + 2I2,(k)k 2 k Z ( k 2 -  l)Il(k) 2k 

The explicit expression for D, will not be given here. The requirement that the 
coefficient of cos kz should vanish gives us the condition 

By use of (40) and (41), we have 

Z ( k )  = ga,(k)h(k)g;(k) ,  (43) 

where Co(k) = Al,(k)/a,(k), which is the amplitude of the first-order surface 
disturbance, and 

From the expression of E(k )  it is noted that this perturbation method fails as k 
tends to unity. 

Equation (16) may now be written as 

1% = [a,,(lc) + soi(lc) + e 2 q k )  + o ( e 3 ) 1 2  

= a; (k )  + 2e2a0(k)i i (4  + o(S3) 

= a;(lc) [ I +  (4,)2h(rc)] + o ( 6 3 ) .  (45) 

For given W,, the above equation can give us the wave-number of the disturbance 
which appears to be stationary. To obtain it, let us expand k in the form 

k = k* + (&)&* + (c&,)~Z* + 0 ( ~ 3 ) ,  (46) 

w, = a&%*), (47) 

where k* is the solution of the equation 
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which has been plotted in figure 2 .  Substitution of (46) into (45) yields 

k* = 0 
and 

Hence, to an observer having a velocity defined by W, relative to the jet, a dis- 
turbanceon the jet appears to be stationary if the wave-number of the disturbance 

where k* is the solution of (47) and h(k)  is given by (44). Some numerical results 
of (49) are plotted in figure 3 .  In  that figure we note that for a given Weber 
number the finite amplitude effect tends to shorten the wavelength of the 
stationary state. 

FIGURE 3. Finite amplitude effect on a stationary-state solution corresponding 
to a given Weber number. 

4. Finite amplitude effect on the unstable states 
The linearized solution given by ( 7 )  indicates that small disturbances with 

m = 0 and k < 1 may be unstable and, if they are unstable, their amplitude will 
increase exponentially fast. To study the non-linear effect on such types of 
transient states a formal perturbation expansion analogous to that used in the 
last section will be employed. 

The free surface boundary conditions for this problem may again be obtained 
from (4) and ( 5 ) .  For axisymmetrical disturbances (m = O ) ,  the free surface 
boundary conditions are 

4, = $zCz+Ct ,  on 7" = 1+5, I 

20-2 
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Let us now make the transformation 

7 = Vt, (51) 

where 
rate of the unstable states. This transformation makes equations (50) become 

is a parameter, independent of r, z and t ,  which characterizes the growth 

$,. = $,!&+vCT: 011 r = 1+5(z,7) ,  ( 5 2 )  

We note that the forms of (52) and (53) are identical, respectively, with those of 
(12) and (13) if the operator - Wia/az in (12) and (13) is replaced by ~ a / a 7 .  

It is further noted that (14) and (15) are still valid except that now the pertur- 
bation potential $ and the free surface displacement 5 are dependent upon the 
variable 7. 

Let us now assume that $, [ and v may all be expanded in power series of 
a small parameter e characterizing the initial amplitude of a small disturbance, 
or 

gz ,  7) = &, 7) + &z, + .3&, + 0(€4), (55) 

(56)  

Similar to the processes used in the last section, the substitution of the pertur- 
bation expansions (54), (55) and (56) into the governing equations (14), (15), (52) 
and (53) will yield sets of equations which must be satisfied by I$,$, 4, k ,  8, t, go, 

5 and $.Ow-ing to the similarities in thegoverning equations, boundary conditions 
and the perturbation expansions, these sets of equations can be obtained from 
equations (19) to (30) by simply replacing the operators a, a/&, oi a/& and 
S a/& by - vo a/&, - 5 a/& and - 5 a/&, respectively, in (19)-(30). However, 
for simplicity, they will not be written out explicitly; instead (19)-(30) will again 
be used except that whenever any one of them is mentioned it is understood, 
from this point onwards, that the above stated replacemenhs have been made. 

v = V , ( k )  + c+(,q + caij(k) + 0 ( € 3 ) .  

Perturbation solutions 

From (21) and (22) the boundary condition for 4 can be obtained i'ts 

c$(k)4T7 = 4r+&zz, 011 T = 1, (57) 

We shall now assume that an initial disturbance periodic in the z-direction may 
be represented, up to the first order in E. by the following expression 

4 = A(7)IO(kr) cos kz, (58) 

where A(7) is an arbitrary function of 7. It is obvious that (58) satisfies (19). 
Substitution of (58) into (57) gives 
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Since an initial disturbance on a system with a free surface is usually character- 
ized by both the initial velocity and the initial free surface displacement, there- 
fore, to describe a general disturbance two independent modes are required, or 
we let 

where a, and a2 are constant. By use of ( 6 0 ) ,  (59) gives 

A(7)  = u1 er + a2 e-r, (60) 

Equations (21) and (58) give us 

(63) 

Integrating ( 6 2 )  with respect to 7, we obtain the corresponding free surface 
displacement - 

( =  . s(7)k4(k) ~ - r o s k z + f ( z ) ,  (64) 
a,(W 

where A(7) = a,er-un,e-' and f ( z )  is an arbitrary periodic function of z with 
period equal to A. I n  order to satisfy the dynamic boundary condition ( 2 2 ) ,  
f (z )  can only be zero. However, we recall that in formulating the problem a 
function o f t  has been deleted from the dynamic free surface boundary condition 
(5). This suggests that so far as a function of 7 is concerned the balance of the 
dynamic boundary condition may be ignored. For this reason we may regard 
f ( z )  to be an arbitrary constant instead of zero. Therefore we may writ,e 

(65) 

where C is a constant. Substitution of ( 6 5 )  into ( 2 0 )  gives 

c = 0.  ( 6 6 )  

To obtain the boundary condition for 6, we eliminate 5 between (26) and ( 2 6 )  
and substitute the known first-order solutions into t8he resulting equation. This 
yields 

6, + 6r = ~ ; ( k )  $rT + 2$(k)  a o ( k )  l o ( k )  A(7) cos kz 

Because the dynamic boundary condition may be regarded as indeterminate 
up to a function of 7 a t  this stage, a function of 7 has been deleted from (67 ) .  The 
requirement that the coefficient of A (7) cos kz in ( 6 7 )  must vanish gives us 

$ ( k )  = 0. (69) 
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A solution of (23) which satisfies (67) with &(k) = 0 can be found to be of the form 

6 = B ( T ) I o ( 2 k T )  COS 2kz, ( 7 0 )  

where B(7) is an unknown function of 7. It should be mentioned that a term of the 
form of A(7)Io(kr)  coskz can be added to the solution 6 given in (70). However, 
for convenience, we shall assume that the small parameter 6 has been so chosen 
that such a term is certain not t o  appear in the higher-order solutions. Sub- 
stitution of (70) into (67) with &(k) = 0 yields 

where a;(k)  is given by (61). A general solution of (71) may be written as 

(72) 
where 6, and b, are arbitrary constants, and 

which may be purely real or purely imaginary. We shall now assume that the 
initial disturbance is applied in such a way that 

bl = b, = 0. (74)  

This assumption will not disturb the present study of the finite amplitude effect 
on the unstable modes. For, if cr0(2k) is purely real, the dist>urbance represented 
by b, and b, is completely similar to the one currently being studied, and, if 
ao(2k)  is purely imaginary, the disturbance due to 6 ,  and b, is stable. From (25 )  

can be found to be 

where A ,  and E are constants, and 

Substituting the obtained 4 and f into the dynamic bounda.ry condition ( 2 6 )  and 
then equating the coefficients of the terms cos 2kz,  we obtain 

where a1 and a, are defined in (60). The substitution of the obtained [ and into 

This completes the second-order solutions. 
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From the obtained first- and second-order solutions, and ( 2 9 )  and (30), the 
boundary condition for @ can be found and is in the form 

$vzz + 6,. = a i ( k )  gT, + [2a , (k )  I,(k)ii(k) - g ( k )  ala2] A (7) cos Icx + El(k ,  7) cos kz 

where 
+ E2(k ,  7) COS 3k2, (80) 

k 
[ l i ( k )  + l f ( k ) ] ]  { [ l t ( k )  +121(k)](T%(k) + (2  + k2)rf(k)) 

4( 1 - 4k2) 
n 

The explicit expressions for El(k ,  7) and E,(k, 7) will not be given here. Again, the 
requirement that the coefficient of A ( r )  cos kx in (80) should vanish yields the 
condition 

2a , (k )10(k ) i i (k ) -g (k )a1a2  = 0, 
which in turn gives 

(82) 

From the expressions for g(1c) and cr,(k), we note that as k tends to 0.5 or 1.0 
from inside the interval (0.5, 1-0) the quantity g(k ) /2a0(k )10(k )  in (83) tends to 
-a. Therefore this perturbation method fails when k tends to 0-5 or 1.0. By 
(56) ,  (69) and (83), we have 

From the above results it is interesting to note that, if the initial disturbance is 
so adjusted that it yields no decaying mode whose initial amplitude is repre- 
sented by uz = 0, then up to the second-order term in e the growth rate of such 
a disturbance depends only on the wave-number k in exactly the same way as has 
been demonstrated by the linearized theory. However, for general initial dis- 
turbances both the subsequent growth rate and the decaying rate of the dis- 
turbances are affected by the magnitudes of the initial disturbances. 

We shall now regard the amplitudes of the initial disturbances eal and ea2 as 
small given quantities and try to find the fastest-growing mode. From the 
linearized theory it is seen that the fastest-growing mode, or the maximum value 
of a o ( k ) ,  occurs at  k = k+ = 0.697. For ea, and ea2 sufficiently small it is con- 
ceivable that a maximum value of a ( k )  should exist in the neighbourhood of 
k+. To find this maximum value we simply differentiate a ( k )  given by (84) with 
respect t o  k and set the resulting equation equal to zero, or 



312 D. P. Wang 

To solve the above equation we may write the solution for k as 

k = k+ +€if + €zala2&+ + 0 ( € 3 ) ,  (86) 

where k+- = 0.697 is the solution of dao(k+)/dk+ = 0. Substituting (86) into (85) 
and then differentiating the resulting equation with respect to  E ,  we ha.ve 

Setting E in (87) equal to zero and since d2g,(k+)/dk+2 < 0, we obtain 

L+ = 0.  (88)  

Similarly, differentiating (87) with respect to  E and then setting E in the resulting 
equation to zero, we have 

(" [ -g!@)-L I) 
(!%)) (89) 

-. t d k  2gO(k)Io(k) k = k t  k+ =z - 

lc=lc+ 

After carrying out the differentiations and substitution of k+ = 0-697 in (89), 
&+ becomes 

For €al and €a2 sufficiently small the most unstable mode is therefore given by 

S+ = -3.255. (90) 

(91) k = 0.697 - 3.255s2a1a2. 

The above result clearly indicates that the most unstable wavelength is a 
function of the magnitudes of the initially applied disturbances. This may help 
to explain the experimentally observed fact that  the most unstable wavelength 
usually varies over a certain range, instead of being a constant (Haenlein 1932). 

Since the solution fails to  be valid at k = 1.0 and 0.5, and possibly a t  some more 
points having the value of k less than 0.5 when higher-order terms are sought, i t  
seems that the present perturbation method in treating unstable states is 
somewhat limited. However, when only those states in the neighbourhood of the 
most unstable state are concerned, this perturbation method does give us some 
analytical insight into the problem of the finite amplitude effect. On the other 
hand, if one is interested in achieving a uniformly valid perturbation method for 
the unstable case one may try to  formulate the problem by using a method ana- 
logous to those methods used in the theory of long waves in shallow water. The 
analogy between these two problems lies in the fact that a small, periodic, axi- 
symmetric disturbance applied to a jet of circular cross-section may be unstable 
only if the wavelength of the disturbance is a t  least 2n times the radius of the jet. 
This in a way is very similar to the problem of long waves in shallow water. A 
formulation along this line has been given by Moiseev (1965). 

The author wishes to express his sincere gratitude to Professor J. B. Keller for 
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